TRECVID WORKSHOP 2021

Multi-label activity recognition in extended videos using objects' spatio-temporal boundaries

"ITI-CERTH participation in ActEV and AVS Tracks of TRECVID 2021"

Konstantinos Gkountakos, Damianos Galanopoulos, Despoina Touska, Konstantinos Ioannidis, Stefanos Vrochidis, Vasileios Mezaris, Ioannis Kompatsiaris

Presenter: Despoina Touska

Problem statement

- Activity recognition and localization in surveillance scenarios
 - O Processes untrimmed surveillance videos
 - Indoor or outdoor environments
 - Human, vehicles or both
 - O Recognizes activity assigning a label
 - Human related
 - Vehicle related
 - Interaction between humans
 - Human-object interaction
 - O Localizes activity's spatio-temporal area
 - Time boundaries (start, end)
 - Spatial location

Surveillance scenarios challenges

- Untrimmed videos' nature
- Camera's large field of view
- Multiple activities simultaneously
- Multiple objects involved within each activity
- Actors performs more than one activity
 - O At the same time
 - O At overlapping time intervals
- Varying lengths of activities

Proposed approach

- Three-step pipeline:
 - O **Detect** objects from **RGB video** frames
 - Extract bounding boxes for every object-of-interest (person, vehicles)
 - Track the detections over the time
 - Output spatio-temporal proposals of the detected objects
 - O **Post-processing** the spatio-temporal proposals
 - Generate Extended Activity Bounding Box (EABBox) for every object
 - Construct **final** spatio-temporal activities **proposals**
 - O Classify activities proposals
 - 3D-CNN model (3D-Resnet)
 - Assign labels to each activity proposal

Pipeline demonstration

Object detection - YOLOv4

- State-of-the-art real-time object detector
- 43.5% AP for MS COCO at 65 FPS (real-time) on Tesla V100
- Pre-trained using MS COCO dataset
 - O Include objects such as "person", "car", "truck"
- Fine-tuning using the VIRAT dataset
 - O 20 epochs
 - O Vehicle and person the target objects
- Detected objects are described by:
 - Bounding box
 - Confidence score
- Object tracker based on Euclidean distance

Post - processing

- Extended Activity Bounding Box (EABBox) creation
- The union of the separated bounding boxes of each object
- Benefits:
 - O Minimisation of the cropping effects avoiding a stretched and deform illustration of the objects
 - O Acquisition of useful background information which could be helpful for activity classification

Activity classification - 3D-Resnet

- Sample size: (16, 112, 112) (frames, width, height)
- Number of layers: 50
- Loaded weights: Kinetics-400 dataset
- Fine-tune using the VIRAT dataset

- Total epochs: 350
- Multi-label classification
- Weighted binary cross-entropy loss
- 35 target activities

Soft - Non maximum suppression

- Refines the classified activities proposals
- Improved version of the NMS algorithm
- Decays the detection scores of all objects as a continuous function of their overlap with other neighboring objects
- No object is eliminated in contrast with NMS
- Same computational complexity with NMS
- Implementation simplicity

Submitted systems

- M4D_2021-baseline:
 - O Fine-tuned YOLOv4
 - O Tracking with Euclidean distance
 - Post-processing
 - O 3D-Resnet
- M4D_2021-M4D_2021_S1:
 - O Fine-tuned YOLOv4
 - O Tracking with Euclidean distance
 - O Post-processing
 - O 3D-Resnet
 - Soft-NMS

Evaluation results

System Name	*PARTIAL AUDC	MEAN-P MISS@0.15TFA	MEAN-W_P MISS@ 0.15RFA
M4D_2021-baseline	0.85484	0.79732	0.87719
M4D_2021-M4D_2021_S1	0.84658	0.79410	0.88521

^{*}PARTIAL AUDC is the primary metric, the lower values the better results

- Slightly improvements in 2nd system
- Soft-NMS algorithm improves the results as it offers the possibility to eliminate duplicate activities which affect negatively the results
- Further improvement are observed for >0.2TFA

Experimental evaluation

Thank you

Despoina Touska destousok@iti.gr

Multimedia Knowledge and Social Media Analytics Laboratory

This work was partially supported by the European Commission under contracts H2020-786731 CONNEXIONS and H2020-833115 PREVISION

0

0

0